

ISO 9001:2008/CE/EX

Reactor series

TOPTION INSTRUMENT CO., LTD

TOPTION INSTRUMENT CO., LTD

TOPTION is professional lab solution provider, and all devoted to provide the best solutions & products for global customers, who are work in chemistry, biology, pharmaceutical, environment analysis, food, academic research, etc. Regardless of the field you work in, we keep striving for the same goal: to provide you with the most suitable solutions & products, to make your research more accurate & efficient.

TOPTION headquarters is located in Xi'an, China, where own hundreds of universities and research institutes, and famous as its thousands of years long history culture. Profound culture and strong scientific research strength, provide sustained and vigorous power for TOPTION development, so that make us could provide better products, solutions and service for you continuously.

Main products contains chemical synthesis reactor, rotary evaporator, thin-film evaporator, photochemical reactor, high pressure reactor, freeze dryer, spray dryer, etc. TOPTION brand instrument has own high reputation in more than 70 countries and regions, provide technical support for tens of thousands organizations to solve problems within their research, special for university, research institutes, industries, inspection agencies, etc. Promoting technology progress and improving human life is TOPTION social mission.

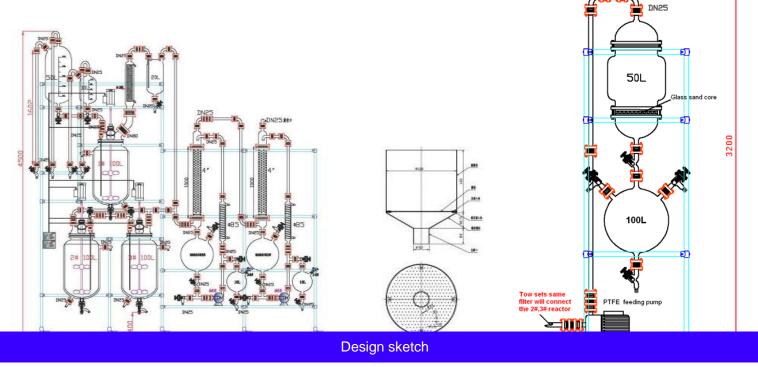
We believe, only the most excellent quality, most leading technology, most complete solution and most professional service, could make TOPTION mission and vision come true. So we will keep in continual innovation and hard work, to provide you with the best solutions & products, and make you research more accurate and efficient.

We are a young, professional and creative team; We are a customer-centric and responsible team. Our mission: make your research more accurate and efficient. Our vision: Become the world's most competitive lab solution provider. Our value: Sharing & win-win, customer success, be thankful, keep growing, innovation and responsible.

Handmade process

TOPTION brand advantages

1. TOPTION is a registered brand, which is well known in global lab instruments trade, ISO9001: 2008 and CE certificated lab solution provider.


2. Commits to become the world's most competitive lab solution provider.

3. Has been widely recognized and won reputation for excellent quality and professional customization among customers in 70 more countries.

4. Brand interpretation: SAFE - ACCURATE - EFFICIENT. Choose TOPTION, choose guarantee and relief.

Professional customization

Engineering team presided over by professors level cheif engineer who has more than 20 years practical working experience. Products inherit characters of safe, accurate, efficient.

Glass reactor test

Rotary evaporator test

Mechanical sealing

Hand-made fire glass

Ex control box

T. SYSTEM
and bai
and bai
and bai
and bai
india.
TR.
Ceneral In.
the state of the s
Name of Lot, or
17
27 3
2
E 980

ISO 9001:2008 certified manufacturer


1. TOPTION has passed ISO9001: 2008 QMS. All raw materials and accessory parts are selected and tested strictly, which ensures product's durability and safety from the beginning of production.

2. Key parts production is guaranteed by TOPTION production equipments and technique, which ensure production precision and interchangeability.

CE certificate

TOPTION instruments have got CE certification, and have been exported to European countries.

Strictly testing before shipping

Products pass various inspections before package, which include: test of electrical voltage durability, glass inner stress, temperature control wave accuracy, operation noise, sealing performance and safety protection, etc.

Service value: Sharing & win-win, customer success, be thankful, keep growing, innovation and responsible.

Professional consultation service on System Configuration
 No showy, no waste, we propose more economical & practical solution to meet user's real needs.
 We offer experimental site for buyers with special needs
 Do experiment with customers so to ensure suitability of TOPTION apparatuses to buyer's needs.
 Excelsior production & On-time delivery
 Products are test by many indexes before shipping, Lead time will be strictly controlled.
 4. Post-sales direction on product application
 Offer free guidance on products operation, help user to improve research accuracy, efficiency and extend product service life by much.

5. Repair and maintenance support

Strong ability on remote trouble shot guidance. Oversea buyers are able to solve problem in short time.

6. Rich parts supply always

Rich parts available to TOPTION customers even for past instruments. Users are released from worry of maintenance cost.

Single layer glass reactor

- 1. Vertical type incline stir reaction
- Incomparably perfect stereo-stir performance.

2. Adiabatic stand with intelligent heating system inbuilt, two kinds heating method: Oil bath & Heating mantle.

- Max temperature up to 180° C, and digital display. Oil bath can equip cooling coil for reaction material chilling.

- Equips Over-heat & Dry-heat protectors, ensure safe operation of heating bath.

3. Heating device material: SS304 stainless steel and spray material are optional.

- 4. Cooling & Liquid separation function.
- 5. Distilling & receiving.
- 6. Discharge valve.

7. Underlay base optional to enable one-time discharge.

- 8. Drip function.
- 9. Multi-function reaction flask.

- Overall flange connection design, eliminate taper joint seizure which may damage reaction flask.

- Standard configuration: stirring, feeding, reflux condensing, temperature measuring, multi-purpose wide opening and non-liquid accumulation bottom discharge function.

- Extend more function: dripping, sample pickup, distilling, rectifying, liquid separation,etc.

Rotary Evaporator

Reactor with heating mantle - stainless steel material & spray plastics material:

High Shear Homogen -eous Emulsification Reactor

Pilot Ultrasonic Emulsification Reactor

High Pressure Reactor

Reactor with oil bath - stainless steel material & spray plastics material:

Heating mantle Max heating temperature up to 300°C, heating quickly. 180-300°, can be customized

3-port liquid separator facility (optional) Is able to separate liquid received of different weight. Advanced 3-port liquid separator system also available.

Cooling coil (optional) Can be installed in heating bath and perform chilling function by getting through cooling liquid.

0.5L ~ 200L Single layer glass reactor

S: SS304L; P: spray plastics; B: oil bath; M : Heating Mantle; EX: Ex-proof

0.5L ~ 2			M : Heati	ng Mantle;	EX: Ex-pr	oof						Rotary Evaporator
Model	TST-2MS TST-2MP TST-2BS	TST-5MP	TST-10MP	TST-20MP	TST-30MS TST-30MP TST-30BS	TST-50MS TST-50MP TST-50BS	TST-80MS TST-80MP TST-80BS	TST-100MS TST-100MP TST-100BS		TST-200MP	TST-250MS TST-250MP TST-250BS	ator /
	TST-2BP			TST-20BP	TST-30BP	TST-50BP	TST-80BP	TST-100BP	TST-150BP	TST-200BP	TST-250BP	I Film Eve Path (Mo
Reaction flask(L)	2	5	10	20	30	50	80	100	150	200	250	Scraped
he mouth number of the bottle	4	4	5	5	5	6	6	6	7	7	7	
Stirring power(W)	90	120	180	180	250	250	250	250	370	450	550	al Glas
Speed(rpm)	0-600	0-600	0-600	0-600	0-600	0-600	0-600	0-600	0-600	0-600	0-600	Chemical Glass
OD of Stirring bar(mm)	φ6	φ10	φ10	φ10	φ12	φ12	φ16	φ16	φ18	φ18	φ18	
Heater	1.5kw 180℃	2kw 180℃	2.5kw 180℃	3kw 180 ℃	4.5kw 180℃	6kw 180 ℃	7kw 180 ℃	9kw 180 ℃	10kw 180 ℃	11kw 180℃	15kw 180 ℃	High Shear Homogen -eous Emulsification
Power(V)	220	220	220	220	220	220 / 380	220 / 380	220 / 380	220 / 380	220 / 380	220 / 380	ligh She eous Er
Material of heater					Stainle	ess Steel / Sp	oraying Plasti	CS				
Heating Method					0	il Bath / Heat	ing Mantle					Pilot Ultrasonic
Frequency-converting	no	have	have	have	have	have	have	have	have	have	have	Ultras
Vacuum sealing						have	•					Pilot
Discharge valve	opti	onal					have					
PTEE stirring bar						have						Vacuum Filter / Glass
Charging cork						have	•					um Filt
Temperature display	Glass	s tube				PT100 se	nsor					Vacui
Reflux and distillation system	optional	optional					have					Photochemical Glass Peortor
Vacuum meter	opti	onal					have					notoch
Overhead stirring						have						E C
Nouth for multi-functions	no	no	no				ł	nave				mal
Cooling coils		optional					Hydrothermal Svnthesis Reactor					

- 1. Capacity: 0.5L, 1L, 2L, 3L, 5L, 10L, 20L, 30L, 50L, 100L, 150L, 200L, 250L.
- 2. Oil bath type & electric heating mantle type, stainless steel & spray plastics are optional.
- 3. High temperature: RT-180°C (oil bath), RT-180°C (heating mantle). RT-300°C (heating mantle) can be customized.
- 4. Vacuum pump & vacuum controller are available, you can control the vacuum degree accurately.

High Pressure Reactor

1.PTFE flush discharge valve

No-sample accumulation in valve during operation and discharge. Max drift diameters is 20~32mm.

2.Side discharge valve (standard or preload)

No dead angle, air isolated discharge. Max drift diameter 20~32mm. Preload discharge valve is able to decrease flask crack risk due to improper over-screw of discharge valve. Customization of TOPTION big capacity glass reactors.

3.Flask cap (≥10L)

1) Charging valve - pure charge process without gel pollution.

2)Thermometer-direct measurement.

3) Condenser - Ball joint connection, easy to assemble, with less vibration.

 All taper joints upgrade to flanges, no seizure, no damage to glass necks.

4. Flange quick press ring

One-piece quick clip design. Offer new experience on easy, reliable, and high sealing connection for flanges.

1. Glass reactor lid.

2. PTFE Reactor stirring paddle.

Double layer glass reactor 1L~200L

Double layer glass reactor

Three layer glass reactor

Three layer glass reactor customization

1. Compared with jacketed glass reactor, it has outermost layer to keep vacuum airtight state.

2. More effective to protect temperature, so as to save reaction time and finally make your research more effective.

Туре	Stir medium flange	Liquid material inflow	Condenser	Temp. measure	Multi function valve	Solid charging port	Stirring paddle	Reactor lid flange(mm)		External diameter (mm)		Power (w)	Rotate speed (rpm)	High Shear Homogen -eous Emulsification Reactor
TOPT-1L	35	24# 0.25L	24#	14#			¢ 7mm Anchor type	150	113	150	250	40	50-800	nic Reactor
TOPT-2L	35	24# 0.25L	24#	14#			¢7mm Anchor type	150	135	180	280	40	50-800	Ultraso cation F
TOPT-3L	35	24# 0.25L	24#	14#			⊄ 7mm Anchor type	150	150	200	300	40	50-800	Pilot Ultrasonic Emulsification Reactor
TOPT-5L	40	24# 1L	24#	19#	24#		${\mathfrak C}$ 10mm single layer two blade paddle type	180	180	230	400	60	50-600	
TOPT-10L	50	34# 1L	34#	DN15	DN25	DN80	c 16mm single layer three blade paddle type	265	230	290	450	120	50-600	ilter / Gla
TOPT-20L	50	34# 1L	34#	DN15	DN25	DN80	$^{ otin}$ 16mm single layer three blade paddle type	265	290	330	550	120	50-600	Vacuum Filter / Glass Liquid Seperator
TOPT-30L	50	34# 1L	34#	DN15	DN25	DN80	c 16mm single layer three blade paddle type	265	330	365	730	120	50-600	
TOPT-50L	50	34# 1L	34#	DN15	DN25	DN80	$^{ m C}$ 16mm double layer three blade paddle type	265	365	410	850	140	50-600	Photochemical Glass Reactor
TOPT-80L	50	5L 24#	DN40 ball mouth	DN15	DN25	DN80	arepsilon 16mm three layer three blade paddle type	340	410	460	950	250	50-600	Photo Glass
TOPT-100L	60	5L 24#	DN40 ball mouth	DN15	DN25	DN80		340	460	500	950	250	50-600	Hydrothermal Synthesis Reactor
TOPT-150L	60	5L 24#	DN40 ball mouth	DN15	DN25	DN80	c 16mm three layer three blade paddle type	340	550	600	980	400	50-600	Synthe
TOPT-200L	60	10L DN25	DN50 ball	DN25	DN25	DN100	x 16mm three layer three blade paddle type	340/ 440PP flange	550	650	1100	400	50-600	High Pressure Reactor

Rotary Evaporator

Scraped Film Evaporator / Short Path (Molecular) Distillation System

Glass reactor with lifting & rotating function

- 1. Kettle body lift, rotate also 120 $^\circ\!\mathrm{C},$ easy to use and clean.
- 2. Glass interface flange seal avoids the use of vacuum grease seal appears the phenomenon is difficult to open;
- 3. 360° rotating function could customize.

Ē									Reactor	Inner		Reactor		
Vacuum Filter / Glass Liquid Seperator	Туре	medium		Condense r	Temp measure	function	Solid charging port	Stirring paddle	lid flange	diameter of reactor	External diameter (mm)	body	Power	Rotate speed (mm)
Vacuu Liqu	TOPR-1L	35	24# 0.25L	24#	14#			ϕ 7mm Anchor type	150	113	150	250	40	50-800
ctor	TOPR-2L	35	24# 0.25L	24#	14#			¢7mm Anchor type	150	135	180	280	40	50-800
Photochemical Glass Reactor	TOPR-3L	35	24# 0.25L	24#	14#			¢ 7mm Anchor type	150	150	200	300	40	50-800
Gla	TOPR-5L	40	24# 1L	24#	19#	24#		lpha 10mm single layer two blade paddle type	180	180	230	400	60	50-600
Hydrothermal Synthesis Reactor	TOPR-10L	50	34# 1L	34#	DN15	DN25		¢ 16mm single layer three blade paddle type	265	230	290	450	120	50-600
Synthes	TOPR-20L	50	34# 1L	34#	DN15	DN25		¢ 16mm single layer three blade paddle type		290	330	550	120	50-600
High Pressure Reactor	TOPR-30L	50	34# 1L	34#	DN15	DN25		lpha 16mm single layer three blade paddle type	265	330	365	730	120	50-600
	TOPR-50L	50	34# 1L	34#	DN15	DN25	DN80			365	410	850	140	50-600

Tel:0086-29-88763980Email:info@toptionlab.comWeb:www.toptionlab.com (for lab solution)www.top

ab.com info@toption-china.com www.toption-china.com (for instrument)

Professional customization of glass reactor

Reactor with pipe bundle condenser

Reactor with horizontal condenser

Reactor with sample condenser

Reactor with rectification column system

Reactor with tail gas treatment system

Falling film evaporator

Reactor with IR heater(400℃)

Reactor with PLC automatic system

Rotary Evaporator

Professional customization of glass reactor

Chemical Glass Reactor

High Shear Homogen -eous Emulsification Reactor

Pilot Ultrasonic Emulsification Reactor

Vacuum Filter / Glass Liquid Seperator

Photochemical Glass Reactor

Hydrothermal Synthesis Reactor

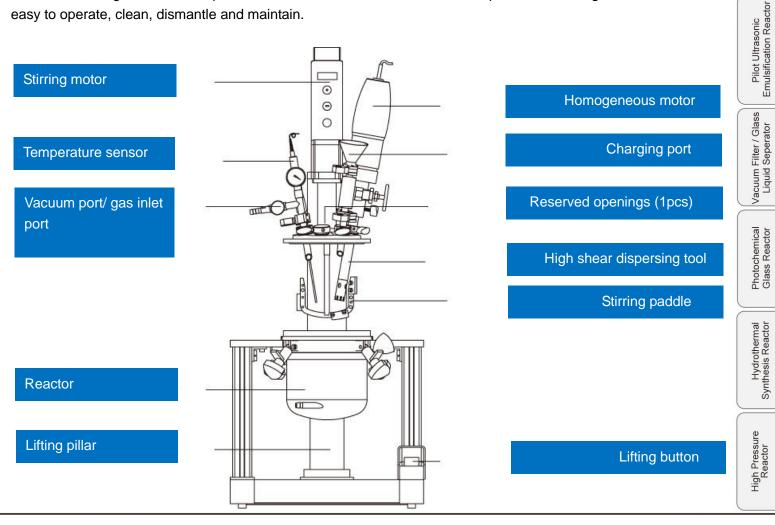
High Pressure Reactor

Ultrasonic continuous reactor

Ultrasonic reactor

Multi-function reactor with filter system

Tel:0086-29-88763980 info@toption-china.com Email:info@toptionlab.com Web:www.toptionlab.com (for lab solution) www.toption-china.com (for instrument)



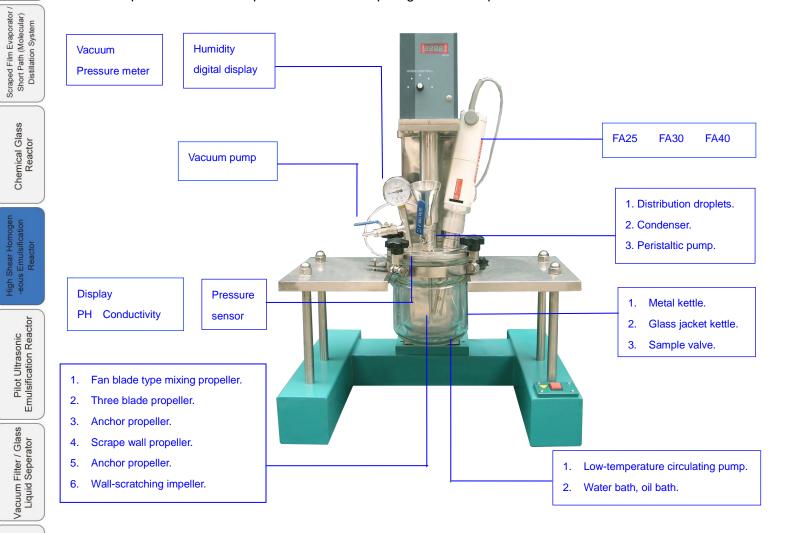
High shear Homogeneous Reactor system

Laboratory Homogeneous Emulsification System Reactor is an instrument developed by our engineers with latest German technologies, designed in modular structure, applies to blending, mixing, emulsifying, dispersing and homogenizing mobile liquids. This homogenizer can be widely applied in cosmetic cream, oil-water emulsion, polyreaction and nanophase material dispersion as well as special occasions requiring vacuum or pressure test.

TOPTION homogenizer has simple structure, small bulk, low noise, stable operation and long service life, and it's easy to operate, clean, dismantle and maintain.

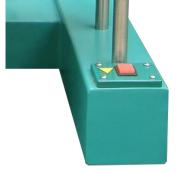
Tel:0086-29-88763980 Email:info@toptionlab.com info@toption-china.com www.toption-china.com (for instrument) Web:www.toptionlab.com (for lab solution)

Rotary Evaporator


Scraped Film Evaporator / Short Path (Molecular) Distillation System

Rotary Evaporator

Structure of High shear Homogeneous Reactor


This homogenizer can be widely applied in cosmetic cream, oil-water emulsion, polyreaction and nanophase material dispersion as well as special occasions requiring vacuum or pressure test.

Detail of Structure of High Homogeneous Reactor

Reactor lid

Reaction vessel & stirring paddle Stainless steel shelf and on/off

Tel:0086-29-88763980Email:info@toptionlab.cominfo@toption-china.comWeb:www.toptionlab.com (for lab solution)www.toption-china.com (for instrument)

Photochemical Glass Reactor

Hydrothermal Synthesis Reactor

High Pressure Reactor

Rotary Evaporator

Scraped Film Evaporator / Short Path (Molecular) Distillation System

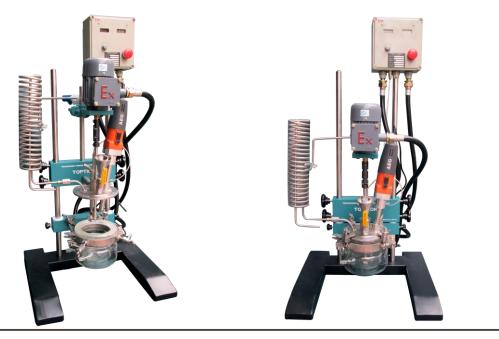
> Chemical Glass Reactor

Pilot Ultrasonic Emulsification Reactor

Vacuum Filter / Glass Liquid Seperator

Photochemical Glass Reactor

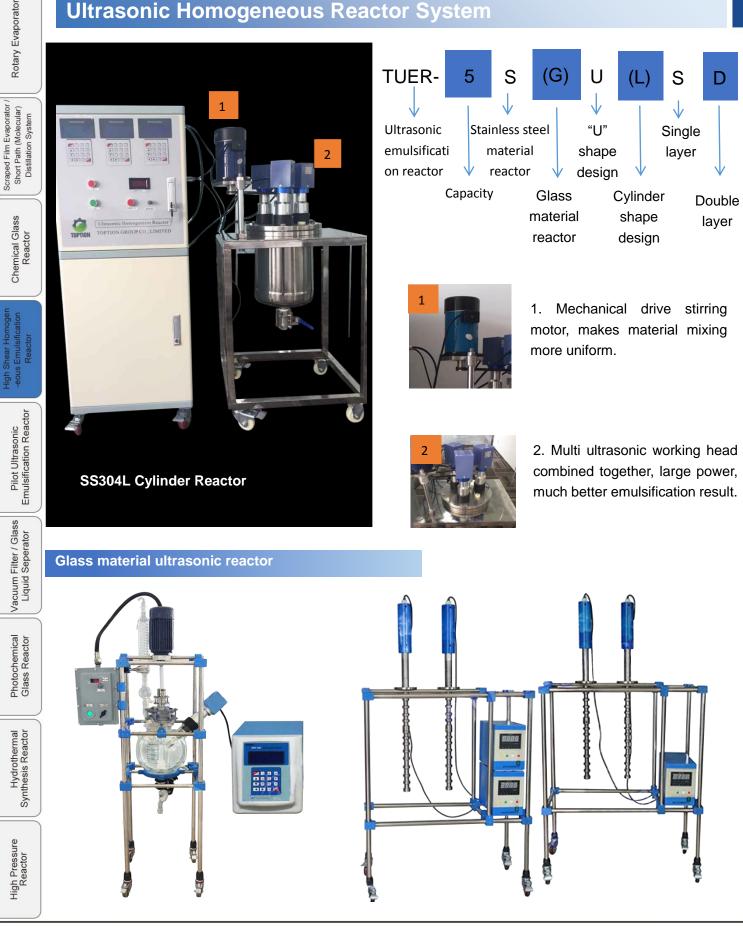
Hydrothermal Synthesis Reactor


High Pressure Reactor

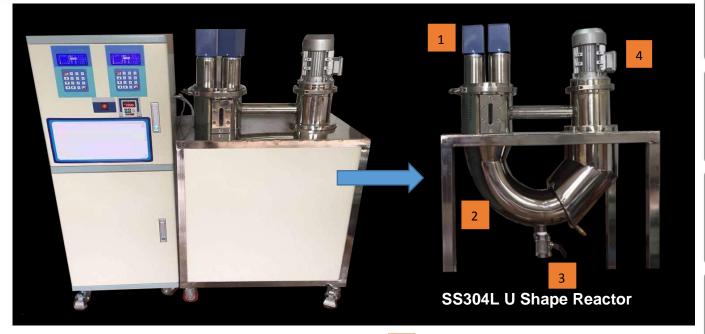
Technical specification:

A: Automatic lifting type M: Manual lift

M: Manual lifting type


Model	THER-1A THER-1M	THER-2A THER-2M	THER-3A THER-3M	THER-5A THER-5M
Emulsifying capacity	1L	2L	3L	5L
Glass structure	Double-layer	Double-layer	Double-layer	Double-layer
Glass material	G3.3	G3.3	G3.3	G3.3
Homogenizer rotation speed		7 Grade adjustable, ac	ljusting range: 10000-28000rį	om.
Lifting height	170 mm	190 mm	190 mm	225 mm
Max.working temperature		Standard 120℃, s	upport 180°C customization.	
Max.handling viscosity	100,000CP	100,000CP	100,000CP	100,000CP
Homogenizer motor power	500W	500W	500W	500W
Main medium-contact materials	SS316L, borosilicate glass, PTFE	SS316L, borosilicate glass, PTFE	SS316L, borosilicate glass, PTFE	SS316L, borosilicate glass, PTFE
Agitator motor power	40W	90W	90W	90W
Agitator rotation speed(rpm)	0-1300rpm	0-1300rpm	0-1300rpm	0-1300rpm
Overall dimension (mm)	400*300*850	450*350*950	450*350*950	450*350*950

Tel:0086-29-88763980Email:info@toptionlab.cominfo@toption-china.comWeb:www.toptionlab.com (for lab solution)www.toption-china.com (for instrument)



Ultrasonic Homogeneous Reactor System

Tel:0086-29-88763980 Email:info@toptionlab.com info@toption-china.com Web:www.toptionlab.com (for lab solution) www.toption-china.com (for instrument)

1. Multi ultrasonic working head combined together for much better sample emulsification result.

2. In-built circulating system makes sample get more uniform mixing, no dead angle.

3. Downward discharging valve, more convenient for material discharging.

4. Vertical electric stirring makes material mixing more uniform.

Description of Pilot ultrasonic emulsification reactor:

The core content of ultrasonic nanotechnology is how to solve the problem agglomeration of nanoparticles, as nano particles themselves is easy to reunite, so want to get single dispersive nano particles is very difficult. How to make the nano particles evenly dispersed in the matrix is the key technology of nanotechnology.

TOPTION ultrasonic series instruments use the cavatition of ultrasonic to disperse the coacervate particle. It put the required processing of particulate suspension (liquid phase) in the super sound field, use appropriate ultrasonic amplitude and duration to process. Due to the inherent characteristics of powder particles coacervate, so for some powder which could not be dispersed well in medium, you could add the right amount of dispersant to keep the dispersed steady state, general could reach dozens of nanometers, even more small. This type ultrasonic emulsification reactor is most suitable to disperse nano materials (graphene, silicon dioxide,etc).

Ultrasonic Emulsification Reactor through its "cavitation effect" to realize the emulsification of oil blended with water, emulsification of water mixed with oil, the mixture and homogenization of dispersed phase and continuous phase, it's modern chemical technology to instead of propeller, colloid mill and other traditional emulsification technology.

Rotary Evaporator

Scraped Film Evaporator Short Path (Molecular) Distillation System

Chemical Glass Reactor

High Shear Homoyen -eous Emulsification Reactor

Pilot ultrasonic emul	sification reactor technic	al specification:			
Model	TUER-5SUS / TUER-5SUD TUER-5SLS / TUER-5SLD TUER-5GLS / TUER-5GLD	TUER-10SUS / TUER-10SUD TUER-10SLS / TUER-10SLD TUER-10GLS / TUER-10GLD	TUER-20SUS / TUER-20SUD TUER-20SLS / TUER-20SLD TUER-20GLS / TUER-20GLD		
Ultrasound Method	Energy-gathered circulation multiple-step type				
Capacity (L)	5	10	20		
Stir Motor Power (W)	100	150	200		
Ultrasonic Frequency	20KHz	20KHz	20KHz		
Standard Ultrasonic Probe	¢ 20*1	¢ 35*1	¢ 35*1		
Ultrasonic Power(w)	50~1200 Adjustable	100~2500 Adjustable	100~2500 Adjustable		
Circulation Stirring Rate (rpm)	0~1000 Integrated Digital Display	0~1000 Integrated Digital Display	0~1000 Integrated Digital Display		
Controlled Temperature °C (Optional)	-4080	-4080	-4080		
Reactor Material	SS304/Glass	SS304/Glass	SS304/Glass		
Application	Laboratory & Pilot	Laboratory & Pilot	Pilot		

Note:1. Professional Customization is provided, high temp. device, low temp. device, constant temp. device are available (-40 $^\circ$ C -80°C).

2. The max volume can be 500L $_\circ$

An important characteristics of ultrasonic emulsification is that, there's no need or less need emulsifier to get very stable emulsion. The obvious advantages of ultrasonic emulsification has prompted it in food, chemical, pharmaceutical, textile, paper making, paint, fuel thermal power, fuel central air conditioning, petroleum, metallurgy and many other industrial process has been applied more and more, including down fuel combustion is an important project to rise.

Rotary Evaporato

Scraped Film Evaporator / Short Path (Molecular)

High Shear Homogen -eous Emulsification Chemical Glass

Photochemical Vacuum Filter / Glass Glass Reactor Liquid Seperator

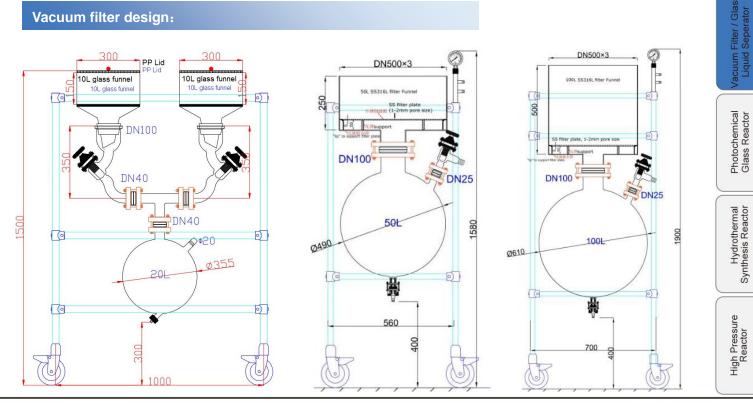
Hydrothermal Synthesis Reactor

Rotary Evaporator

Scraped Film Evaporator / Short Path (Molecular) Distillation System

Chemical Glass Reactor

High Shear Homogen -eous Emulsification Reactor


Pilot Ultrasonic Emulsification Reactor

Vacuum filter

	SS304 type		Ceramic type	Glass type
List name/ Model	TP-CL10L(G)	TP-CL20L(G)	TP-CL30L(G)	TP-CL50L(G)

List name/ Model	TP-CL10L(G)	TP-CL20L(G)	TP-CL30L(G)	TP-CL50L(G)
	TP-CL10L(S)	TP-CL20L(S)	TP-CL30L(S)	TP-CL50L(S)
	TP-CL10L(C)	TP-CL20L(C)		
Funnel volume	10L	20L	30L	50L
Funnel material	G: Glass ; S: SS30	4L	G: Glass ; S: SS304L	
Funnel material	G: Glass ; S: SS30 C: Ceramic	4L	G: Glass ; S: SS304L	
Funnel material Collecting flask		4L 20L	G: Glass ; S: SS304L 30L	50L

Vacuum filter design:

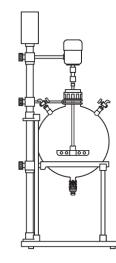
Tel:0086-29-88763980 Email:info@toptionlab.com Web:www.toptionlab.com (for lab solution)

info@toption-china.com www.toption-china.com (for instrument)

18

Scraped Film Evaporator / Short Path (Molecular) Distillation System

> Chemical Glass Reactor


High Shear Homogen -eous Emulsification Reactor

Photochemical Glass Reactor

Hydrothermal Synthesis Reactor

High Pressure Reactor

Glass liquid seperator

Т

		Model	TOPTF-10L	TOPTF-20L	TOPTF-30L	TOPTF-50L
		Reaction bottle(L)	10	20	30	50
	Basic	openings	3	3	3	3
	information	Stirring power(W)	120	120	250	250
		Speed(rpm)	40-720	40-720	40-720	40-720
		Stirring rod dia(mm)	¢10	¢10	¢12	¢12
		Voltage(V)	220	220	220	220
		frequency control	Have	Have	Have	Have
		Vacuum sealing	Have	Have	Have	Have
J	Function and	Bottom discharging				
	Configuration	valve	Have	Have	Have	Have
		PTFE stirring rod	Have	Have	Have	Have
		Size (mm)	450x550x1200	450x550x1200	550x650x1500	550x650x1700

Tel:0086-29-88763980Email:info@toptionlab.cominfo@toption-china.comWeb:www.toptionlab.com (for lab solution)www.toption-china.com (for instrument)

Hydrothermal synthesis reactor

0000

PPL Liner (260℃)

PPL Lined

Rotary Evaporator

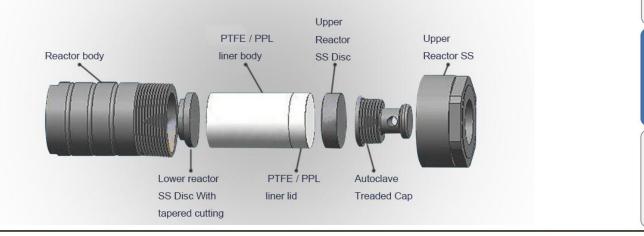
Scraped Film Evaporator / Short Path (Molecular) Distillation System

Chemical Glass Reactor

High Shear Homogen -eous Emulsification Reactor

m .	
-	Ψ.
-	Ð
f	Đ
f	Je
Í	he
Í	he
Í	the
Í	the
Í	Ithe
Í	
Í	
Í	inthe

High Pressure Reactor


PII	mer	(200	U)

.

Model	Material	Capacity	Remark	N
TOPT-HT10		10ml		Т
TOPT-HT25		25ml	1. Safe temperature is	ŀ
TOPT-HT30		30ml	200°C.	Т
TOPT-HT50	1. Shell made	50ml	2. Working pressure	Т
TOPT-HT100	of quality	100ml	≤3 Mpa (surface	т
TOPT-HT150	stainless	150ml	pressure).	Т
TOPT-HT200	steel.304L	200ml		-
TOPT-HT250		250ml	3. Tempe heating and	Т
TOPT-HT300	2. Liner	300ml	cooling speed: $\leq 5^{\circ}$ C/	Т
TOPT-HT400	materials is	400ml	min.	т
TOPT-HT500	special PTFE.	500ml	4.Break down the	Т
TOPT-HT1000		1000ml	refractory material	Т
TOPT-HT1500		1500ml	quickly.	
TOPT-HT2000		2000ml		Т

	Model	Material	Capacity	Remark	
\$	TOPT-HP10		10ml		
	TOPT-HP25		25ml	1. Safe temperature	
	TOPT-HP30		30ml	is 260°C.	1
	TOPT-HP50	1. Shell made	50ml	2. Working pressure	$\left(\right)$
	TOPT-HP100	of quality stainless	100ml	≤3 Mpa (surface pressure).	
1	TOPT-HP150	steel.304L	150ml	3. Tempe heating and	
	TOPT-HP200	2. Liner	200ml	cooling speed: $\leq 5^{\circ}C/$	
	TOPT-HP250	materials is special PPL.	250ml	min. 4.Break down the	
	TOPT-HP300		300ml	refractory material	
	TOPT-HP400		400ml	quickly.	
	TOPT-HP500		500ml		

Please note: Shell can be made of SS316L or copper

Tel:0086-29-88763980 Email:info@toptionlab.com info@toption-china.com Web:www.toptionlab.com (for lab solution) www.toption-china.com (for instrument)

Customization of hydrothermal synthesis autoclave reactor

1.Copper material hydrothermal synthesis reactor.

2. Pressure released vent type hydrothermal synthesis autoclave reactor.

Tel:0086-29-88763980Email:info@toptionlab.cominfo@toption-china.comWeb:www.toptionlab.com (for lab solution)www.toption-china.com (for instrument)

Rotary Evaporator

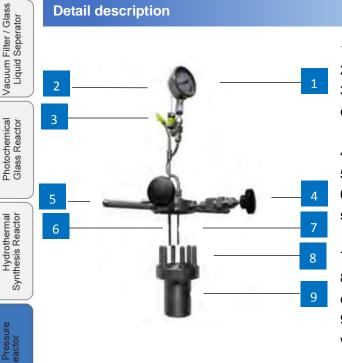
Scraped Film Evaporator / Short Path (Molecular) Distillation System

Chemical Glass Reactor

High Shear Homogen -eous Emulsification Reactor

> Pilot Ultrasonic Emulsification Reactor

THR type high pressure reactor with magnetic stirrer


1.Application: Chemistry, Pharmaceutical, Macromolecule, Metallurgy, Environmental Protection, etc., chemical process areas. For instance: high pressure reaction, hydrogenation reaction, catalytic reaction, synthetic process. pharmaceutical synthesis, high pressure polymerization, nano synthesis, conditions screening, crystallization screening, combinatorial chemistry, biomass conversion, supercritical reaction, hydrothermal reaction, polymer synthesis, electrochemical corrosion testing, infrared detection, etc.

2. The maximum operating temperature of THR High Pressure Reactor is 250°C, use corrosive medium to do reaction, PTFE inner is optional, but its high temperature resistance is 180°C, so if the corrosive medium temperature is over 180°C, please choose other material reactors.

3.THR Series High Pressure Reactor adopt module heating method, which is quick heating and precise temperature control. THR series all are internal magnetic stirring, when magnetism arrive 250°C, degaussing phenomenon will happen, so if operating in over 250°C condition, please choose TOPTION MHR Series High Pressure Reactor.

Detail description

- 1.Pressure Gage monitor working pressure in reactor.
- 2. Explosion Valve Protect reator overpressure working.

3. Temperature Sensor Plug - monitor the temperature in reactor, connect with thermocouple.

4.Needle valve - air inflow, exhaust or sampling.

5.Handlebar - to teardown reactor lid.

6.Temperature measure jacket tube - used to insert temperature sensor.

7.Accused of bottom tube - used to sample during reaction.

8.Reactor lid lock screw - uniform distribution 6pcs in total, clockwise is tight, anticlockwise is loose.

9.Reactor body - coefficient of material charging is 80% of reactor whole volume, not suitable for all kinds of medium.

THR type high pressure reactor with magnetic stirrer

1.Temperature display - display real time temp. when working. 2.Rotating speed display - display real time rotating speed during working.

3.Indicator lamp display - function indicator when working.

4.Temp & time set key [T-Set] - used to set temperature, timing, and parameters which is related with temperature & time.

5.UpKey - add key.

6.Down key and self set key - reduce key and self set key.

7.Lift key and check key - shift key and check working time & timing.

8.Speed set key - used to set speed and related parameters.

9.Working and stop key - start or stop working.

Technical specification

The stirring	reactor laboratory min	iature high-pressure	e reaction kettle	
Model	THR50	THR100	THR250	THR500
Material capacity(L)	50ml	100ml	250ml	500ml
The working interface	LCD Display	LCD Display	LCD Display	LCD Display
The maximum operating temperature	250 ℃	250 ℃	250 ℃	250 ℃
The maximum operating temperature with PTFE Liner	180 °C	180℃	180℃	180℃
Heating mode	Module heating	Module heating	Module heating	Module heating
The heating power	1.2KW	1.2KW	1.5KW	2.0KW
Stirring speed	0-1200rpm	0-1200rpm	0-1300rpm	0-1300rpm
Stirring method	The internal magnetic stirring	The internal magnetic stirring	The internal magnetic stirring	The internal magnetic stirring
The stirring power	40W	40W	40W	80W
The maximum working pressure	10Mpa	10Mpa	10Mpa	10Mpa
Materials of construction	SS304 (standard); (SS316L Alloy TA2, ALLOY C-276, Nickel ALloy, Zirconium materials are optional)			
PTFE liner	Optional			

Note:

1. Max volume 2000ml could be customized.

2.Suitable for the material which temp $<250^{\circ}$ C and is nonmagnetic.

3. Temperature timing set, temp. set when working, this function is optional.

Rotary Evaporator

Scraped Film Evaporator / Short Path (Molecular) Distillation System

Chemical Glass Reactor

MHR type high pressure reactor with magnetic coupling mechanical agitation

Configuration and description

2. Internal heat collection heater.

5. Air inlet valve (sampling valve).

3.4. Stainless steel reactor.

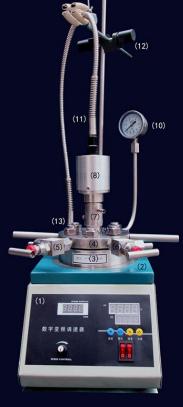
display and Nixie tube display are optional).

1. Rotating speed and temperature control panel (LCD

Scraped Film Evaporator / Short Path (Molecular) Distillation System

Chemical Glass Reactor

High Shear Homogen -eous Emulsification Reactor


Pilot Ultrasonic Emulsification Reactor

Photochemical Glass Reactor

Hydrothermal Synthesis Reactor

6. Air exhaust valve. 7. Principal axis cooling jacket. 8. The coupling magnetic steel. 9. Sensor insert mouth. 10. Pressure meter. 11. Transmission flexible shaft. 12. Flexible shaft support frame. 13. Dynamical system. 14. MHR high pressure reactor is suitable for small capacity sample reaction, high temp, big viscosity or magnetism medium. 15. Safety explosion protection valve is 12.5MPa, digital display pressure meter is optional. 16. Max working temp:300°C, module electric heating,

heating quickly and control temp precise.

Top entry type soft driving magnetic coupling mechanical agitation

Customization - temperature / rotating speed / Indicator lamp display, etc.

Model	MHR50	MHR100	MHR250	MHR500
Material capacity(L)	50ml	100ml	250ml	500ml
The working interface		LCD E	Display	
The maximum operating temperature	300 ℃	300 ℃	300 ℃	300 ℃
The maximum operating temperature with PTFE Line	180 ℃	180℃	180 ℃	180 ℃
PPL liner	250 ℃	250 ℃	250 ℃	250 ℃
Heating mode	Module heating	Module heating	Module heating	Module heating
The heating power	1.2KW	1.2KW	1.5KW	2.0KW
Stirring speed	0-1200rpm	0-1200rpm	0-1300rpm	0-1300rpm
Stirring method	Rare ea	arth permanent	magnetic couplir	ng drive
The stirring power	40W	40W	40W	80W
The maximum working pressure	10Mpa	10Mpa	10Mpa	10Mpa
Materials of construction	SS316L (stan	dard); (Alloy TA	2, ALLOY C-276	, are optional)
PTFE liner/PPL liner Optional				
Note: 1. Max volume 2000ml could be customized.				

OmI could be customized.

2.Suitable for the material which temp >250 $^{\circ}$ C and has magnetism, viscosity is a little big. 3. Temperature timing set, temp. set when working, this function is optional.

THR (N) series high pressure reactor with magnetic stirrer

Parallel micro high pressure reactor do research with more than one THR series high pressure reactor at the same time, each THR high pressure reactor is equipped with independent heating, stirring and pressure component, to ensure every high pressure reactor could do research independent under different temperature, pressure and stirring speed conditions, so as to screen experimental conditions more quickly and optimize it.

The reaction kettle bit and volume could be flexible combination, for ordinary, has 2, 4, 6, 8 parallel high pressure reactor, you could customize based on your actual experimental requirements.

Standard configuration of Parallel micro high pressure reactor

1. Pressure meter.	2. Safety valve.	3. Temperature sensor.	Imal
4. Inlet valve.	5. Sampling valve.	6. Vent valve.	Hvdrothe
7. Heating switch.	8. Stirring switch.	9. Rotating speed display meter.	
10. Temperature display meter.	11. Rotating speed control button.	12. Temperature control button.	Pressure
13. The first via inlet valve.	14. The second via inlet valve.		Hiah

Rotary Evaporator

Scraped Film Evaporator / Short Path (Molecular) Distillation System

THR (N) series high pressure reactor with magnetic stirrer

Technical specification

ea							
High Shear -eous Emu Rea	Model	THR50 (N)	THR100 (N)	THR250(N)	THR500 (N)		
Pilot Ultrasonic Emulsification Reactor	The reaction kettle bit	N=2, 4, 6, 8					
	Material capacity(L)	50ml	100ml	250ml	500ml		
	The working interface	Touch control liquid crystal display					
	The maximum operating temperature	250 ℃	250 ℃	250 ℃	250 ℃		
Vacuum Filter / Glass Liquid Seperator	The maximum operating temperature with PTFE Liner	180 ℃	180°C	180℃	180℃		
Vacuum Liquic	Heating mode	Module heating					
Photochemical Glass Reactor	The heating power	1.2KW	1.2KW	1.5KW	2.0KW		
	Stirring speed	0-1200rpm	0-1200rpm	0-1300rpm	0-1300rpm		
Pho Gla	Stirring method	The internal magnetic stirring					
Hydrothermal Synthesis Reactor	The stirring power	40W	40W	40W	80W		
	The maximum working pressure	10Mpa	10Mpa	10Mpa	10Mpa		
	Materials of construction	SS316L (st	andard); (Alloy TA2	2, ALLOY C-276, ar	re optional)		
a	PTFE liner	Optional					
High Pressure Reactor							

Rotary Evaporator

Scraped Film Evaporator / Short Path (Molecular) Distillation System

Chemical Glass Reactor

High Shear Homogen -eous Emulsification eactor

KCFD type mini high pressure reactor

Description

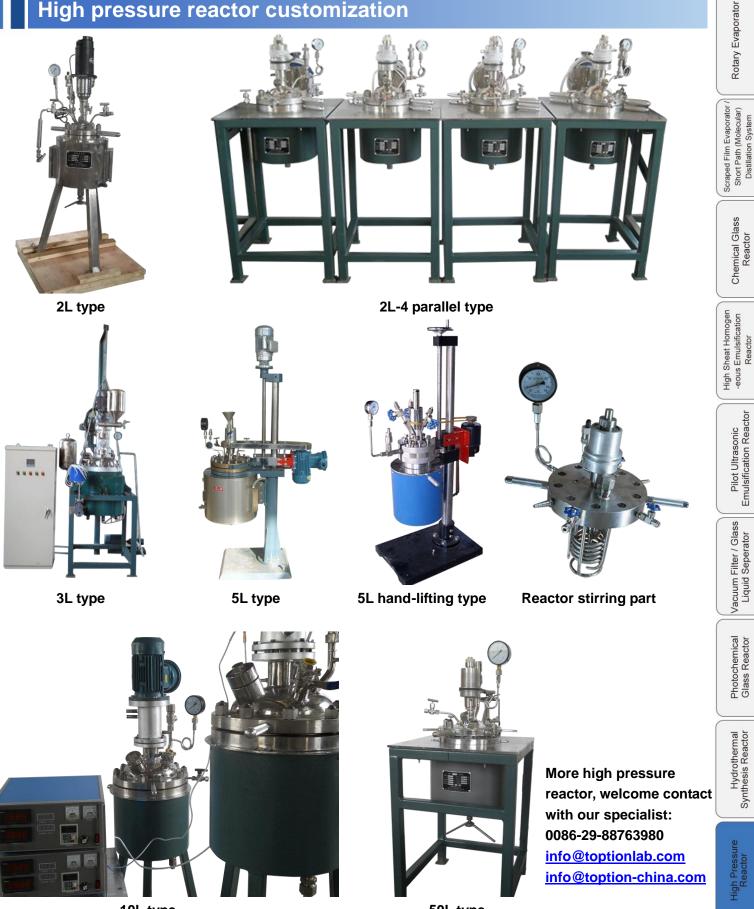
1. Make cumbersome experimental simple, it can be realized in one operation with different environments or with different environment temperature/ pressure diversified series of different experiments.

2. Through the RS232 communication interface a computer connected to print and show the historical value and the actual curve according to user's needs, the whole system can be monitored real time by software.

3. Catalysis, high temperature and pressure synthesis, dynamics testing, Fischer- tropsch, and hydrogenation reaction. Mainly used in the fields of biochemical, chemical material, environmental protection new material reaction, etc.

	TOPT-KCFD025-1 0	1. Volume:0.25L2. Design pressure: <10MPa
	TOPT-KCFD03-10	1. Volume:0.3L2. Design pressure: <10MPa3.Temp: RT300°C4.Materials:SS3045.Agitation type:with Mechanical agitation
Small- high-pressure reactor (the Lid can rise ,the reactor	TOPT-KCFD05-10	 Volume:0.5L Design pressure: <10MPa Temp:RT300°C Materials:SS304 Agitation type:with Mechanical agitation
can turn,without bottom discharge)	TOPT-KCFD1-10	 Volume: 1L Design pressure: <10MPa Temp:RT300°C Materials:SS304 Agitation type:with Mechanical agitation
	TOPT-KCFD2-10	 Volume: 2L Design pressure: <10MPa Temp:RT300°C Materials:SS304; Agitation type:with Mechanical agitation
	TOPT-KCFD5-10	 Volume: 5L Design pressure: <10MPa Temp:RT300°C Materials:SS304; Agitation type:with Mechanical agitation

TFCF type hand-lifted high pressure reactor


Scraped Film Evaporator / Short Path (Molecular) Distillation System Chemical Glass Reactor

ogen tion	100	19	
High Shear Homogen -eous Emulsification Reactor	Technical specific	ation	
Pilot Ultrasonic Emulsification Reactor		TOPT-TFCF1-10	 Volume: 1L Design pressure: <10MPa RT300°C; Material: SS304; Type agitation:with Mechanical agitation
Vacuum Filter / Glass Liquid Seperator		TOPT-TFCF2-10	1.Volume: 2L 2.Design pressure: <10MPa 3.RT300°C; 4.Material: SS304; 5.Type agitation:with Mechanical agitation
Photochemical Vacuum Glass Reactor Liqui	High-pressure reactor (the Lid can rise ,the reactor can not turn,with bottom	TOPT-TFCF5-10	1.Volume: 5L 2.Design pressure: <10MPa 3.RT300°C; 4.Material: SS304; 5.Type agitation:with Mechanical agitation
Hydrothermal Synthesis Reactor Glas	discharge)	TOPT-TFCF10-10	1.Volume: 10L 2.Design pressure: <10MPa 3.RT300°C; 4.Material: SS304; 5.Type agitation:with Mechanical agitation
High Pressure Synt		TOPT-TFCF20-10	1.Volume: 20L 2.Design pressure: <10MPa 3.RT300°C; 4.Material: SS304; 5.Type agitation:with Mechanical agitation

High pressure reactor customization

10L type

50L type

Tel:0086-29-88763980 Email:info@toptionlab.com info@toption-china.com Web:www.toptionlab.com (for lab solution) www.toption-china.com (for instrument)

30

Make your research more accurate and efficient.

TOPTION INSTRUMENT CO., LTD

Add:HeCheng, TaiBai Road, YanTa District, XI 'AN CHINA Tel:0086-29-88763980 Fax:0086-29-88990306-8006 Email:info@toptionlab.com info@toption-china.com Web:www.toptionlab.com (for lab solution) www.toption-china.com (for instrument)